Сосредоточенные и распределенные заряды

Заряды можно распределять по какой-либо области тел, тогда их называют распределенными. Когда же заряд целиком собран в одну точку, его называют точечным. Большинство школьных задач физики связано с точечными зарядами.

Сосредоточенный заряд

Электрический заряд, сосредоточенный в какой-либо точке пространства, называют точечным.

Заряд точечный, когда он находится в одной точке
Рис. 1. Точечный заряд

Силу взаимодействия точечных зарядов можно вычислить, используя закон Кулона.

Распределенные заряды

Электрический заряд, так же, можно распределять по объему, площади, или длине. Такие заряды называют распределенными. Чтобы описать эти заряды, используют понятие плотности заряда.

Если заряд распределен по:
— объему, говорят о объемной плотности заряда;
— площади, употребляют поверхностную плотность;
— длине, используют линейную плотность.

Примечание: Плотности отрицательных зарядов записывают со знаком «минус».

Формула линейной плотности заряда

Заряд распределен по длине
Рис. 2. Заряд распределен по длинному тонкому телу

\[ \large \boxed {\tau = \frac{q}{L} } \]

\( \large q \left(\text{Кл} \right) \) – заряд;

\( \large L \left(\text{м} \right) \) – длина, по которой распределен заряд;

\( \large \tau \left(\frac{\text{Кл}}{\text{м}} \right) \) – линейная плотность заряда;

Формула поверхностной плотности заряда

Любая поверхность обладает площадью, распределяя по ней заряд, получим поверхностную его плотность.

Этот термин используют, например, для вычисления электрического поля заряженной плоскости, или плоского конденсатора (двух параллельных плоскостей).

Заряд распределен по площади
Рис. 3. Заряд распределен по плоской поверхности

\[ \large \boxed {\sigma = \frac{q}{S} } \]

\( \large S \left(\text{м}^{2} \right) \) – площадь, по которой распределен заряд;

\( \large \sigma \left(\frac{\text{Кл}}{\text{м}^{2}} \right) \) – поверхностная плотность заряда;

Формула объемной плотности заряда

Функция, описывающая плотность распределения заряда в трехмерном пространстве, входит в одно из уравнений Максвелла.

Заряд распределен по объему
Рис. 4. Заряд распределен по объему тела

\[ \large \boxed {\rho = \frac{q}{V} } \]

\( \large V \left(\text{м}^{3} \right) \) – объем, по которому распределен заряд;

\( \large \rho \left(\frac{\text{Кл}}{\text{м}^{3}} \right) \) – объемная плотность заряда;

Примечание:

Джеймс Клерк Максвелл (1831 — 1879) – талантливый шотландский математик и физик. Популяризатор науки, экспериментатор и конструктор научных приборов.

Описал электромагнитное взаимодействие с помощью своих уравнений (уравнения Максвелла). Система этих уравнений лежит в основе современной электродинамики.

Предсказал электромагнитные волны, обнаружил, что свет имеет электромагнитную природу и может создавать давление.

Занимался исследованиями в области молекулярной физики и термодинамики. Использовал математический аппарат статистики, получил температурное распределение скоростей молекул.

Проводил исследования в области астрономии и оптики, для планеты Сатурн провел анализ устойчивости колец.

Именно Максвелл заложил трехцветный принцип, который используется в цветной фотографии и телевидении.

Ссылка на основную публикацию
Вставить формулу как
Блок
Строка
Дополнительные настройки
Цвет формулы
Цвет текста
#333333
Используйте LaTeX для набора формулы
Предпросмотр
\({}\)
Формула не набрана
Вставить