Закон Кулона

Еще в древности было известно, что наэлектризованные тела взаимодействуют. Силу взаимодействия двух небольших заряженных шариков с помощью крутильных весов впервые измерил Шарль Кулон. Он сформулировал закон, который позже назвали его именем.

Так же, было выяснено, что сила, с которой два заряда притягиваются, или отталкиваются, зависит не только от самих зарядов, но и от вещества, в котором эти заряды находятся.

Опыт Кулона

Кулон нашел способ измерить взаимное действие двух зарядов. Для этого он использовал крутильные весы.

Ему не пришлось применять дополнительную особо чувствительную аппаратуру. Потому, что взаимное действие зарядов имело достаточную для наблюдения интенсивность.

Примечание: Опыт Кулона похож на опыт Кавендиша, который экспериментально определил гравитационную постоянную G.

Устройство крутильных весов

Такие весы (рис. 1) содержат перекладину — тонкий стеклянный стержень, расположенный горизонтально. Он подвешен на тонкой вертикально натянутой упругой проволоке.

На одном конце стержня находится небольшой металлический шарик. К другому концу прикреплен груз, который используется, как противовес.

Еще один металлический шарик, прикрепленный ко второй палочке из стекла, можно располагать неподалеку от первого шарика. Для этого в верхней крышке корпуса весов проделано отверстие.

Устройство крутильных весов, использованных Кулоном
Рис. 1. Устройство крутильных весов, использованных Кулоном для обнаружения силы взаимодействия зарядов

Если наэлектризовать шарики, они начнут взаимодействовать. А прикрепленная к проволоке перекладина, на которой находится один из шариков, будет поворачиваться на некоторый угол.

На корпусе весов на уровне палочки располагается шкала с делениями. Угол поворота связан с силой взаимного действия шариков. Чем больше угол поворота, тем больше сила, с которой шарики действуют друг на друга.

Чтобы сдвинувшийся шарик вернуть в первоначальное положение, нужно закрутить проволоку на некоторый угол. Так, чтобы сила упругости скомпенсировала силу взаимодействия шариков.

Для закручивания проволоки в верхней части весов есть рычажок. Рядом с ним расположен диск, а на нем – еще одна угловая шкала с делениями.

По нижней шкале определяют точку, в которую необходимо вернуть шарик. Верхней шкалой пользуются, чтобы установить угол, на который нужно рычажком закрутить проволоку.

С помощью крутильных весов Шарль Кулон выяснил, как именно сила взаимного действия зависит от величины зарядов и расстояния между зарядами.

В те годы единиц для измерения заряда не было. Поэтому ему пришлось изменять заряд одного шарика с помощью метода половинного деления.

Когда он касался заряженным шариком второго такого же шарика, заряды между ними распределялись поровну. Таким способом, можно было уменьшать заряд одного из шариков, участвующих в опыте, в 2, 4, 8, 16 и т. д. раз.

Так опытным путем Кулон получил закон, формула которого очень похожа на закон всемирного тяготения.

В память о его заслугах, силу взаимодействия зарядов называют Кулоновской силой.

Закон Кулона для зарядов в вакууме

Рассмотрим два точечных заряда, которые находятся в вакууме (рис. 2).

Два положительных заряда q и Q отталкиваются в вакууме
Рис. 2. Два положительных заряда q и Q, расположенных в вакууме на расстоянии r, отталкиваются. Силы отталкивания направлены вдоль прямой, соединяющей заряды

На рисунке 2 сила \(\large F_{Q} \) – это сила, с которой положительный заряд Q отталкивает второй положительный заряд q. А сила  \(\large F_{q} \) принадлежит заряду q, с такой силой он  отталкивает заряд Q.

Примечание: Точечный заряд – это заряженное тело, размером и формой которого можно пренебречь.

Силы взаимодействия зарядов, по третьему закону Ньютона, равны по величине и направлены противоположно. Поэтому, для удобства можно ввести обозначение:

\[\large F_{q} = F_{Q} = F\]

Для силы взаимодействия зарядов в вакууме Шарль Кулон сформулировал закон так:

Два точечных заряда в вакууме,
взаимодействуют с силой
прямо пропорциональной
произведению величин зарядов
и обратно пропорциональной
квадрату расстояния между ними.

Формула для этого закона на языке математики запишется так:

\[\large \boxed { F = k \cdot \frac {|q| \cdot |Q| }{r^{2}} } \]

\(F \left( H \right) \) – сила, с которой два точечных заряда притягиваются, или отталкиваются;

\(|q| \left( \text{Кл}\right) \) – величина первого заряда;

\(|Q| \left( \text{Кл}\right) \) – величина второго заряда;

\(r \left( \text{м}\right) \) – расстояние между двумя точечными зарядами;

\(k \) – постоянная величина, коэффициент в системе СИ;

Сила – это вектор. Две главные характеристики вектора – его длина и направление.

Формула позволяет найти одну из характеристик вектора F — модуль (длину) вектора.

Чтобы определить вторую характеристику вектора F – его направление, нужно воспользоваться правилом: Мысленно соединить два неподвижных точечных заряда прямой линией. Сила, с которой они взаимодействуют, будет направлена вдоль этой прямой линии.

Сила Кулона – это центральная сила, так как она направлена вдоль прямой, соединяющей центры тел.

Примечание: Еще один пример центральной силы — сила тяжести.

Что такое коэффициент k с точки зрения физики

Постоянная величина \(k \), входящая в формулу силы взаимодействия зарядов, имеет такой физический смысл:

\(k \) — это сила, с которой отталкиваются два положительных точечных заряда по 1 Кл каждый, когда расстояние между ними равно 1 метру.

Значение постоянной k равно девяти миллиардам!

\[\large \boxed { k = 9\cdot 10^{9} \left( H \cdot \frac{\text{м}^{2}}{\text{Кл}^{2}}\right) } \]

Это значит, что заряды взаимодействуют с большими силами.

Смысл коэффициента k в формуле взаимодействия зарядов
Рис. 3. Коэффициент k в формуле взаимодействия зарядов

Константу k можно вычислить опытным путем, расположив два известных заряда (не обязательно по 1 Кулону каждый) на удобном для измерений расстоянии (не обязательно 1 метр) и измерив силу из взаимного действия.

Нужно подставить известные величины зарядов, расстояние между ними и измеренную силу в такую формулу:

\[\large \boxed { k = \frac {F \cdot r^{2}}{|q| \cdot |Q|} } \]

Величина k связана с электрической постоянной \(\varepsilon\) такой формулой:

\[\large \boxed { k = \frac{1}{4\pi \cdot \varepsilon_{0}} } \]

Поэтому дробь из правой части этой формулы можно встретить в различных справочниках физики, где она заменяет коэффициент k.

Закон Кулона для зарядов в веществе

Если два точечных заряда находятся в веществе, то сила их взаимного действия будет меньше, чем в вакууме. Для зарядов в веществе закон Кулона выглядит так:

\[\large \boxed { F = \frac{1}{\varepsilon} \cdot k \cdot \frac {|q| \cdot |Q| }{r^{2}} } \]

\(F \left( H \right) \) – сила взаимодействия зарядов в веществе;

\(|q| ; |Q| \left( \text{Кл}\right) \) – величины зарядов;

\(r \left( \text{м}\right) \) – расстояние между зарядами;

\( k = 9\cdot 10^{9} \) – постоянная величина;

\( \varepsilon \) – диэлектрическая проницаемость вещества, для разных веществ различается, ее можно найти в справочнике физики;

Два заряда -q и +Q притягиваются в вакууме сильнее, чем в диэлектрике
Рис. 4. Два заряда -q и +Q, расположенные в вакууме на расстоянии r, притягиваются сильнее, нежели те же заряды, расположенные на таком же расстоянии в диэлектрике

Силы, с которыми заряды действуют друг на друга в веществе, отличаются от сил взаимодействия в вакууме в \( \varepsilon \) раз:

\[\large \boxed { F_{\text{(в диэлектрике)}} = \frac{1}{\varepsilon} \cdot F_{\text{(в вакууме)}} } \]

Примечание: Читайте отдельную статью, рассказывающую, что такое диэлектрическая проницаемость и электрическая постоянная.

 

 

Ссылка на основную публикацию
Вставить формулу как
Блок
Строка
Дополнительные настройки
Цвет формулы
Цвет текста
#333333
Используйте LaTeX для набора формулы
Предпросмотр
\({}\)
Формула не набрана
Вставить
Adblock
detector