Механическая энергия

Энергия – скалярная величина. Любую энергию в системе СИ измеряют в Джоулях.

В механике рассматривают два вида энергии тел – кинетическую энергию и потенциальную энергию.

Сумма кинетической и потенциальной энергии называется полной механической энергией

Кинетическая энергия

Кинетическая энергия – это энергия движения. Любое тело, находящееся в движении, обладает кинетической энергией.

В русском языке есть глагол «кинуть». Бросим (кинем) камень – он будет находиться в движении, то есть, будет обладать кинетической энергией.

Когда тело изменяет свою скорость, изменяется его кинетическая энергия.
Скорость увеличивается – кинетическая энергия тоже растет, скорость падает – кинетическая энергия уменьшается.
Если тело покоится, кинетической энергии нет. Математики в таком случае запишут: \(E_{k}=0 \).

Рассмотрим тело, движущееся по поверхности с какой-либо скоростью (рис 1а).

Тело движется по горизонтальной поверхности поступательно
Рис. 1. Тело, обозначенное на рисунке шаром, движется по горизонтальной поверхности поступательно

Зная массу и скорость тела, можно рассчитать его кинетическую энергию с помощью формулы:

\[ \large \boxed{ E_{k} = m \cdot \frac{v^{2}}{2}}\]

\( E_{k} \left( \text{Дж}\right) \) – кинетическая энергия;

\( m \left( \text{кг}\right) \) – масса тела;

\( v \left( \frac{\text{м}}{c}\right) \) – cскорость, с которой тело движется.

Потенциальная энергия

Любое тело, поднятое над поверхностью, обладает потенциальной возможностью упасть и совершить работу. Например, потенциальная энергия поднятого над гвоздем молотка переходит в работу по забиванию гвоздя в доску.

Физики говорят: поднятое на высоту тело обладает потенциальной энергией.

Примечание: Потенциальная энергия возникает у тела из-за притяжения Земли.

Вообще, потенциальная энергия – это энергия взаимодействия (притяжения, или отталкивания). В нашем примере – энергия притяжения тела и Земли.

Если тело изменит высоту, на которой оно находится, будет изменяться его потенциальная энергия.
Тело опускается вниз – потенциальная энергия уменьшается.
Тело поднимается выше – потенциальная энергия растет.
Когда тело находится на поверхности земли, потенциальной энергии у него нет \(E_{p}=0\).

Рассмотрим тело, находящееся на какой-либо высоте над поверхностью земли (рис 1б).

Тело над поверхностью
Рис. 2. Тело находится на небольшой высоте над поверхностью

Можно рассчитать потенциальную энергию тела, зная его массу и высоту тела над поверхностью земли, с помощью формулы:

\[ \large \boxed{ E_{p} = m \cdot g \cdot  h}\]

\( E_{p} \left( \text{Дж}\right) \) – потенциальная энергия;

\( m \left( \text{кг}\right) \) – масса тела;

\( h \left( \text{м}\right) \) – высота, на которую тело подняли над поверхностью земли.

Полная механическая энергия тела

Если сложить кинетическую энергию тела с его потенциальной энергией в какой-либо момент времени, мы получим полную механическую энергию, которой тело обладало в этот момент времени.

Летящий в небе самолет (рис. 3) одновременно будет обладать и кинетической энергией – он движется, и потенциальной энергией – он находится на высоте.

Тело движется поступательно, находясь на некоторой высоте
Рис. 3. Самолет движется поступательно, находясь на высоте над поверхностью

Любая энергия – это скаляр (просто число).  Значит, энергия направления не имеет и ее можно складывать алгебраически.

\[ \large \boxed{ E_{k} + E_{p} = E_{\text{полн. мех}} }\]

\( E_{p} \left( \text{Дж}\right) \) – потенциальная энергия тела;

\( E_{k} \left( \text{Дж}\right) \) – кинетическая энергия, которой обладает тело;

\( E_{\text{полн. мех}} \left( \text{Дж}\right) \) – полная механическая энергия этого тела;

Советую далее прочитать о законе сохранения энергии

Ссылка на основную публикацию
Вставить формулу как
Блок
Строка
Дополнительные настройки
Цвет формулы
Цвет текста
#333333
Используйте LaTeX для набора формулы
Предпросмотр
\({}\)
Формула не набрана
Вставить