Кипение и удельная теплота парообразования

Жидкость может переходить в парообразное состояние двумя способами – испарением и кипением. Испаряются жидкости во всем температурном диапазоне, в то время, как кипение происходит при строго определенной температуре для каждой конкретной жидкости.

Что такое кипение

Кипение – это:

  • бурный переход жидкости в пар. Во всем объеме жидкости образуются пузырьки, пар в этих пузырьках насыщенный;
  • эндотермический процесс, он происходит с поглощением энергии.

Образование пара во всем объеме жидкости называют кипением.

Примечание: Интересен тот факт, что перед началом кипения от чайника с водой доносится специфический шум.

Различия между испарением и кипением

Характерным проявлением кипения может служить образование пузырьков пара внутри жидкости (рис. 1):

Во время кипения пар образуется во всем объеме жидкости, а при испарении - только на поверхности
Рис. 1. Во время испарения пар образуется только на поверхности, а во время кипения – во всем объеме жидкости

На следующем рисунке 2 представлены отличия процессов испарения и кипения подробнее:

На рисунке приведены основные отличия двух процессов образования пара – испарения и кипения
Рис. 2. Есть два процесса образования пара – испарение и кипение, рисунок поясняет их основные отличия

Образование пара (парообразование):

  • на поверхности – это испарение,
  • во всем объеме – это кипение.

Испарение происходит при любой температуре с поверхности, а кипение – только при одной конкретной температуре, но во всем объеме жидкости.

Процессы кипения и конденсации на графиках

Пусть небольшое количество воды находится в просторном закупоренном сосуде.

Разберем, как выглядят на температурных графиках процессы кипения и конденсации. Для начала рассмотрим график нагревания и кипения (рис. 3).

Вначале вода имела температуру +20 градусов Цельсия. Будем нагревать эту воду. Поначалу ее температура будет расти. На графике это показано наклонной синей линией, находящейся в левой части рисунка.

На рисунке представлен график нагревания воды, ее кипения и нагревания полученного пара
Рис. 3. График нагревания воды, ее кипения и нагревания полученного пара

До бесконечности температура подниматься не будет. Как только температура достигнет некоторого предела, вода закипит. Из рисунка следует, когда температура воды достигла отметки +100 градусов Цельсия и начался процесс кипения. Этот процесс на рисунке схематично обозначен горизонтальной красной линией.

Горизонтальное положение линии кипения означает, что во время кипения температура воды не изменяется. Температура будет оставаться неизменной до тех пор, пока вся вода не превратится в газообразное состояние — пар. Для компактности рисунка я укоротил эту линию, на самом деле, длину этой линии нужно увеличить.

Уже после того, как вся вода превратилась в пар, температура пара начала повышаться. Это изображено на рисунке наклонной синей линией, находящейся правее красной линии.

Будем теперь отбирать тепловую энергию у молекул. Предположим, что мы охлаждаем горячий водяной пар, находящийся в закупоренном сосуде. Процессы его охлаждения и конденсации представлены на графике (рис. 4). Этот график можно получить, зеркально отразив вокруг вертикальной оси график, связанный с нагреванием, рассмотренный ранее.

На рисунке представлен график охлаждения пара, его конденсации и охлаждения полученной воды
Рис. 4. График охлаждения пара, его конденсации и охлаждения полученной воды

Из графика следует:

Вначале температура пара уменьшается от +180 градусов Цельсия до +100 градусов. Это наклонная синяя линия, расположенная в левой части рисунка.

Затем, происходит конденсация пара. Молекулы пара собираются в капли жидкости. При этом, температура пара не изменяется и остается равной +100 градусам Цельсия.

Как только весь пар конденсируется, образовавшаяся жидкая вода начинает охлаждаться до конечной температуры + 20 градусов Цельсия. На графике охлаждение воды – это синяя наклонная линия, находящаяся справа от красной линии конденсации.

Температура кипения и как ее найти на графике

Чтобы жидкость закипела, ее нужно нагреть до температуры кипения.

На рисунке 5 представлен температурный график нагревания воды. Температуру кипения можно определить по горизонтальной линии, обозначающую процесс кипения. Нужно продолжить эту линию пунктиром по направлению к вертикальной оси температур. Точка, в которой пунктир упрется в ось и будет температурой кипения жидкости.

Чтобы найти температуру, при которой жидкость кипит, нужно на графике найти горизонтальную линию кипения, а потом провести пунктир к оси температуры
Рис. 5. Если на графике температуры найти горизонтальную линию кипения, а потом провести пунктир к оси температуры, мы найдем температуру кипения

Температура кипения – это температура, при которой пар образуется во всем объеме жидкости. Такая температура у каждой жидкости своя, ее можно найти в справочнике физики.

Температуры кипения некоторых веществ

Сравним для наглядности значения температуры кипения некоторых веществ.

Нам известно, что температура кипения питьевой воды равна 100 градусам на шкале Цельсия.

При комнатной температуре некоторые вещества пребывают в газообразном состоянии, но при более низких температурах они превращаются в жидкости. Например, кислород превращается в кипящую жидкость при минус 183 градусах Цельсия.

В противоположность этому, вещества, которые мы привыкли видеть твердыми при комнатной температуре, в кипящую жидкость превратятся при более высоких температурах. К примеру, медь станет кипящей жидкостью при 2567 град. Цельсия, а железо – при 2500 град. Цельсия

На рисунке 6 представлен список некоторых веществ и указана температура, при которой эти вещества кипят.

Табличка, в которой приведена температура, при которой кипят некоторые вещества
Рис. 6. Таблица — температура кипения некоторых веществ

Расширенный список жидкостей и их температуру кипения можно найти в справочнике физики.

Почему температура жидкости при кипении не изменяется

Тепловая энергия, которую получает жидкость во время кипения, тратится на образование пара во всем объеме жидкости. Поэтому во время кипения температура жидкости не изменяется.

Разберем подробнее, что происходит, когда мы сообщаем тепловую энергию какой-либо жидкости.

Получаемая от источника тепловая энергия передается молекулам жидкости. Скорость движения молекул увеличивается, а значит, растет их кинетическая энергия. Чем выше температура, тем быстрее будут двигаться молекулы.

Находясь в жидкости, каждая молекула притягиваются к соседним молекулам. То есть, молекулы удерживаются в жидкости силами притяжения соседних молекул. Если есть взаимодействие молекул – их взаимное притяжение, значит, есть потенциальная энергия такого взаимодействия.

По мере нагревания, энергия движения некоторых молекул увеличится настолько, что они преодолеют притяжение соседних молекул и, покинут жидкость. Чем выше температура, тем большее число молекул сможет покинуть жидкость.

Мы помним, что при испарении жидкость покидают молекулы, находящиеся только на ее поверхности. А во время кипения энергию, достаточную для того, чтобы вылететь из жидкости, получают не только молекулы на поверхности, но и молекулы, находящиеся внутри жидкости.

Примечания:

  • Наблюдая за кипящей жидкостью, можно заметить, что пар образуется внутри жидкости во всем ее объеме. Пузырьки пара буду образовываться даже у дна. Они будут подниматься к поверхности, при этом расширяясь. Внутри пузырьков находятся молекулы, энергия которых достаточна для того, чтобы покинуть жидкость.
  • Вместо слов «Внутри жидкости», физики говорят — «Во всем объеме жидкости».

Как давление влияет на температуру кипения

Мы можем влиять на температуру кипения жидкостей, изменяя давление. Если давление воздуха увеличить, то температура кипения, так же, возрастет. К примеру, вода при давлении 220 атмосфер (это 21,6 миллионов Паскалей) закипит только тогда, когда ее температура поднимется до 370 градусов Цельсия.

А уменьшая давление, мы наоборот, температуру кипения жидкостей понизим. Именно из-за пониженного давления, температура кипения воды в высокогорных районах ниже, чем, на равнинной местности, которая ближе к уровню мирового океана. В горах вода закипает при температуре 90 градусов Цельсия. Из-за этого, некоторые продукты высоко в горах сварить не получится.

Чем выше давление, тем выше температура кипения жидкости. Уменьшив давление, мы понизим температуру кипения.

Что такое удельная теплота парообразования

Возьмем какую-либо жидкость массой 1 кг, предварительно нагретую до температуры кипения. Будем сообщать ей тепловую энергию, чтобы испарить эту жидкость полностью.

Та энергия (теплота), которую мы затратим, чтобы испарить с помощью кипения 1 кг жидкости, называется удельной теплотой парообразования. Удельной величиной эту теплоту называют потому, что она приходится на 1 кг жидкости.

Удельная теплота парообразования — это энергия, которую нужно затратить, чтобы испарить 1 кг жидкости, предварительно нагретой до температуры кипения.

\(\large L \left( \frac{\text{Дж}}{\text{кг}}\right)\) – удельная теплота парообразования (конденсации).

На рисунке 7 представлена таблица, в которой содержится удельная теплота парообразования (конденсации) при температуре кипения для некоторых жидкостей и металлов в расплавленном состоянии.

Табличка, в которой приведена удельная теплота парообразования (конденсации) некоторых веществ при температуре кипения
Рис. 7. Таблица – удельная теплота парообразования (конденсации) некоторых веществ при температуре кипения

Что происходит с энергией во время кипения и конденсации

Кипение: жидкость получает тепловую энергию (количество теплоты), из нее вырываются молекулы. Полученная энергия тратится на преодоление притяжения соседних молекул и на расширение образовавшегося пара.

Конденсация: молекулы пара отдают тепловую энергию в окружающее пространство, собираясь в капельки — превращаясь в жидкость.

Выполняется закон сохранения энергии. Именно поэтому теплота парообразования и теплота конденсации совпадают. Процессы кипения и конденсации протекают при одной и той же температуре. Различие кроется в том, что кипение происходит с поглощением энергии, а конденсация связана с выделением энергии.

Как удельная теплота парообразования связана с количеством теплоты — формула

Пусть жидкость предварительно нагрета до температуры кипения, и нам известны:

  • ее масса (количество килограммов) и
  • удельная теплота парообразования;

Мы можем посчитать общее количество теплоты, требуемое для перевода всей жидкости в пар. Расчеты нужно вести по формуле:

\[\large \boxed{ Q = L \cdot m }\]

\(\large m \left( \text{кг} \right) \) – масса вещества;

\(\large L \left( \frac{\text{Дж}}{\text{кг}} \right) \) – удельная теплота парообразования (конденсации);

\(\large Q \left( \text{Дж} \right) \) – количество теплоты, поглощенное жидкостью во время кипения, т. е. общая тепловая энергия для перевода всей жидкости в пар;

Формулу можно применять так же, чтобы рассчитать количество теплоты, выделяемое в окружающую среду молекулами пара при их конденсации.

Для процесса конденсации величина \(\large Q \) – это количество теплоты, выделенное молекулами пара в окружающую среду;

Чем удельная теплота парообразования отличается от количества теплоты

Отличия удельной теплоты парообразования от количества теплоты, приведены на рисунке 8:

Удельная теплота парообразования и количество теплоты – это тепловая энергия, приходящаяся на различное количество килограммов жидкости, находящейся при температуре кипения
Рис. 8. Если жидкость находится при температуре кипения, то удельная теплота парообразования — это энергия для перевода в пар одного кг жидкости, а количество теплоты – это энергия перевода в пар нескольких кг жидкости

В любом случае, жидкость предварительно нужно нагреть до температуры кипения.

Количество теплоты – это энергия, необходимая для конденсации или образования пара при температуре кипения для нескольких килограммов жидкости.

Удельная теплота парообразования – это энергия, необходимая для перевода в пар 1-го килограмма жидкости.

Выводы

  1. Жидкость может переходить в парообразное состояние двумя способами: испарением или кипением.
  2. Образование пара (парообразование) на поверхности – это испарение, а во всем объеме – это кипение.
  3. Кипение – это эндотермический процесс, который происходит с поглощением энергии. Во всем объеме жидкости образуются пузырьки, пар в этих пузырьках насыщенный;
  4. Чтобы жидкость начала кипеть, ее нужно нагреть до температуры кипения. Каждая жидкость кипит при строго определенной для нее температуре.
  5. Удельная теплота парообразования — это энергия, которую нужно затратить, чтобы испарить 1 кг жидкости, предварительно нагретой до температуры кипения.
  6. На графике температур процессы кипения и конденсации изображаются горизонтальными линиями.
  7. Умножив удельную теплоту парообразования \(\large L \) на количество килограммов m кипящей жидкости, получим общее количество теплоты \(\large Q \), затраченной на перевод всей жидкости в пар во время ее кипения.
Ссылка на основную публикацию
Вставить формулу как
Блок
Строка
Дополнительные настройки
Цвет формулы
Цвет текста
#333333
Используйте LaTeX для набора формулы
Предпросмотр
\({}\)
Формула не набрана
Вставить
Adblock
detector