Электрическое поле и способы его описания

Если снять шерстяной свитер в сухую погоду, мы услышим треск. А если снимать свитер в темноте, иногда можно даже заметить искорки электрических разрядов.

Если расчесывать в сухую погоду сухие волосы пластмассовой расческой, то происходит ее электризация трением. Наэлектризованная расческа получит заряд и сможет притягивать небольшие кусочки бумаги.

Проделывая опыт с расческой и сухими волосами, можно убедиться, что наэлектризованные волосы и расческа буду притягиваться. Мы наблюдаем притяжение, значит, волосы и расческа обладают противоположными зарядами. Приближая расческу к волосам, обнаружим, что притяжение между ними возрастает.

Натертая о волосы расческа притягивает кусочки бумаги
Рис. 1. Наэлектризованные предметы обладают способностью притягивать небольшие тела, находящиеся на некотором расстоянии

Этот опыт позволил убедиться, что заряды действуют друг на друга на расстоянии. Чем ближе заряды находятся, тем сильнее их взаимное действие друг на друга.

Из механики известно, что существует ударное взаимодействие тел, когда, например, один бильярдный шар ударяется о другой такой же шар. В школьной физике рассматривают два вида ударного взаимодействия – абсолютно упругий и абсолютно неупругий удар.

Существует, так же, безударное взаимное действие тел – их притяжение, или отталкивание. К примеру, в механике, силу притяжения между телами, имеющими массу, вычисляют с помощью закона всемирного тяготения.

А силу взаимодействия электрических зарядов описывает закон Кулона.

Взаимодействие зарядов передается без участия вещества

Заряды будут притягиваться и отталкиваться не только в воздухе, но, даже в безвоздушном пространстве. В этом легко убедиться, если поместить заряженный электроскоп под колокол и откачать из-под колокола воздух. Полоски бумаги, имеющие одинаковые заряды, все так же, продолжат отталкиваться, независимо от того, в воздухе ли они находятся, либо в безвоздушном пространстве.

Листочки заряженного электроскопа отталкиваются и в воздухе и в вакууме
Рис. 2. Для передачи взаимного действия зарядов вещество не нужно, так как это взаимодействие передается не через вещество

Это значит, что передача взаимодействия зарядов происходит не через вещество.

Ученые из Англии – Майкл Фарадей и Джеймс Максвелл, долгое время изучали электрические заряды. Они выяснили, что заряды окружены особым видом материи, которую они назвали электрическим полем.

Любой заряд окружен электрическим полем — особым видом материи.

Теории дальнодействия и близкодействия

Физики выдвигали различные теории, пытаясь объяснить взаимодействие зарядов. Наибольшее распространение получили две – их называют теориями близкодействия и дальнодействия.

Дальнодействие

Теория дальнодействия сообщает, что один заряд действует на другой заряд непосредственно. То есть, чтобы передать действие одного заряда на другой, посредники не нужны.

Кроме того, взаимодействие происходит мгновенно на любых расстояниях. Это значит, что если убрать один из взаимодействующих зарядов, то его действие на оставшийся заряд прекратится мгновенно.

Близкодействие

В противоположность этой теории Майкл Фарадей предложил свою теорию близкодействия.

Эта теория заявляет о том, что непосредственно действовать друг на друга заряды не могут. То есть, для передачи своего воздействия заряду нужна некоторый помощник. И каждый заряд создает в пространстве вокруг себя этого помощника. Фарадей назвал его электрическим полем.

На другие заряды будет действовать не сам заряд, а поле, созданное этим зарядом. Такое поле распространяется в пространстве не мгновенно, а с конечной скоростью.

Примечание: Как выяснилось позже, это очень большая скорость – триста тысяч километров в секунду. Ее называют скоростью света.

Поэтому, если один из взаимодействующих зарядов быстро убрать, то второй заряд узнает о его исчезновении не мгновенно, а через некоторое, пусть небольшое, время.

Получается, что взаимодействие зарядов протекает не непосредственно, а в виде цепочки. Каждый заряд создает вокруг себя поле, именно поле действует на другой заряд, помещенный в него.

А сила, действующая на заряд, расположенный в какой-либо точке пространства, зависит от характеристик поля в этой точке.

Сравнение теории дальнодействия с теорией близкодействия
Рис. 3. Основные отличия теории дальнодействия от теории близкодействия

В настоящее время общепринятой теорией, объясняющей взаимодействие зарядов, является теория близкодействия Фарадея. Так как эта теория полностью подтвердилась экспериментально.

Примечание: Кроме электрических существуют, так же, магнитные поля. В отличие от электростатического, магнитное поле не имеет своих магнитных источников. Оно возникает в пространстве вокруг движущихся зарядов. То есть, магнитное поле – это поле электрических зарядов, находящихся в движении.

Джеймс Клерк Максвелл в середине 19-го века показал, что электрическое и магнитное поля связаны и это электромагнитное поле распространяется в пространстве с очень большой, но конечной скоростью.

Поле и вещество – это два вида материи

Мир, окружающий нас, материален. Значит, материя – это то, что существует реально, независимо от того, наблюдаем ли мы за ней, или нет.

Она может проявлять себя в виде двух частей — вещества и поля. Нас окружает вещество, а атомы и молекулы — это мельчайшие единицы вещества.

Поле – это еще один вид материи. Поле веществом не является, однако, оно существует реально.

Поле и вещество составляют материю
Рис. 4. Материя состоит из двух частей — поля и вещества

Как обнаружить электрическое поле

Мы не чувствуем электрическое поле, так как у нас нет органов чувств, способных его обнаружить.

Но, используя нечто, что обладает чувствительностью к электрическому полю, можно убедиться, что поле, окружающее заряды, существует.

В качестве чувствительного элемента можно использовать любой электрический заряд. Потому, что любой заряд окружен своим собственным электрическим полем и, благодаря ему может чувствовать подобные поля, создаваемые другими зарядами. Такой заряд, используемый для обнаружения поля, физики называют пробным.

Что такое пробный точечный заряд
Рис. 5. Описание понятия пробного точечного заряда

Примечания:

  1. Некоторые живые существа могут чувствовать электрические поля, например, некоторые виды рыб.
  2. Электрическое поле можно обнаружить по его действию на заряды, а, так же, с помощью различных приборов.
  3. Поле заряда действует с некоторой силой на расположенный рядом другой заряд. То есть, заряды действуют друг на друга благодаря своим электрическим полям.

Мы можем обнаружить электрическое поле благодаря его действию на другие заряды. Электрическая сила — это сила, с которой поле действует на внесенный в него пробный заряд.

Примечание: Не следует путать пробный и элементарный заряд.

Две характеристики электростатического поля

Поле, окружающее неподвижные заряды, называют электростатическим полем.

Электрическое поле можно описать двумя величинами – векторной величиной — напряженностью \(\large \vec{E}\) и скалярной величиной – потенциалом \(\large \varphi \).

Две характеристики для описания электрического поля
Рис. 6. Электрический потенциал и напряженность описывают поле зарядов

Примечание: Применяют, так же, еще одну характеристику электрического поля — вектор электрической индукции \(\large \vec{D}\).

Описываем электрическое поле с помощью вектора

Рассмотрим два неподвижных точечных электрических заряда. Один заряд обозначим большой буквой Q:

\(\large Q \left( \text{Кл}\right) \) – этот заряд создает вокруг себя электрическое поле.

Чтобы обнаружить это поле, на некотором расстоянии от заряда Q поместим еще один заряд.

\(\large r \left( \text{м}\right) \) — расстояние между зарядами.

\(\large q \left( \text{Кл}\right) \) — второй заряд, будем называть его пробным.

Примечания:

  1. Заряд точечный, если его размерами можно пренебречь;
  2. Обычно знак такого пробного заряда выбирают положительным. Пробный заряд имеет небольшую величину, такую, что поле, создаваемое им, на другие заряды почти не влияет.

Свойство 1: Поле, создаваемое зарядом, влияет только на другие заряды. Это поле не влияет на заряд, породивший его.

Благодаря своим электрическим полям заряды q и Q действуют друг на друга. Силу их взаимодействия можно рассчитать по закону Кулона:

\[\large |\vec{F}| = k \cdot \frac {|q| \cdot |Q|}{r^{2}} \]

\(\large F \left( H \right) \) – сила, с которой два точечных заряда притягиваются, или отталкиваются;

Для нас важным сейчас является само наличие взаимодействия. Чтобы не выяснять, будет ли сила воздействия силой притяжения, или отталкивания, каждый заряд поместим внутрь модуля.

Свойство 2: Электрическое поле, принадлежащее заряду Q в какой-либо точке пространства, не зависит от того, есть ли в этой точке какой-то другой заряд.

Что такое напряженность поля

Введем физическую величину, которая описывает поле заряда Q и не зависит от пробного q заряда. Для этого разделим обе части уравнения на пробный q заряд:

\[\large \frac {|\vec{F}|}{|q|} = k \cdot \frac {|Q|}{r^{2}} \]

Обратите внимание, что правая часть полученного уравнения не зависит от пробного заряда. Потому, что пробный заряд, обозначенный малой буквой q, не входит в правую часть. Правая часть зависит только от заряда, создавшего поле и обозначенного большой буквой Q.

Введем обозначение для дроби, расположенной в левой части полученного уравнения:

\[\large \boxed { \vec{E} = \frac {\vec{F}}{q} } \]

\( \large \vec{E} \left( \frac {B}{\text{м}} \right) \) – напряженность электрического поля, измеряется в Вольтах, деленных на метр, или в Ньютонах, деленных на Кулон;

Напряженность электростатического поля в выбранной точке пространства – это векторная величина. Она равна отношению силы, действующей на пробный заряд, находящийся в выбранной точке поля к величине этого заряда. В различных точках поля силы могут быть разными, значит, будут различаться и напряженности в этих точках.

Чтобы найти (длину) модуль вектора E напряженности поля, создаваемого точечным зарядом, приравняем к величине E правую часть полученного выше выражения:

\[\large \boxed {|\vec{E}| = k \cdot \frac {|Q|}{r^{2}} } \]

\(\large k = 9\cdot 10^{9}  \left( H \cdot \frac{\text{м}^{2}}{\text{Кл}^{2}}\right)\) – постоянная величина;

\(\large |Q| \left( \text{Кл}\right) \) — заряд, создающий в пространстве вокруг себя электрическое поле;

\(\large r \left( \text{м}\right) \) – расстояние от заряда Q до точки, в которую мы поместили пробный заряд.

Как измерить напряженность поля в точке
Рис. 7. Измерить напряженность поля в точке можно, используя пробный заряд

Примечание: Поле мы измеряем в той точке, в которую помещаем пробный заряд.

Напряженность – это вектор. Две главные характеристики вектора – его длина и направление.

Величина \( \large \vec{E} \) является силовой характеристикой электрического поля. Чем больше напряженность E, тем больше сила F, действующая на пробный заряд, помещенный в это поле.

\[\large \boxed { \frac {1 Н}{ 1 \text{Кл}} = \frac {1 B}{ 1 \text{м}} } \]

Если на заряд 1 Кулон, помещенный в электростатическое поле, действует сила 1 Ньютон, то напряженность этого поля равна единице.

По третьему закону Ньютона, силы, с которыми взаимодействуют два заряда, будут равными.

Каждый неподвижный заряд создает свое собственное электростатическое поле. Если заряды имеют различные величины, то напряженности их полей различаются.

Куда направлен вектор Е

Обратим в очередной раз внимание на формулу:

\[\large \vec{E} = \frac {\vec{F}}{q} \]

Заряд q – скалярная величина. А сила F – векторная.

Воспользуемся математическими свойствами векторов: разделив вектор F на скаляр q, мы получим новый вектор E:

  1. его длина отличается от вектора F.
  2. направления векторов F и E совпадают (либо векторы F и E направлены в противоположные стороны).
Направление вектора напряженности для двух видов зарядов
Рис. 8. Направление вектора E выбирается от положительных зарядов и в сторону отрицательных зарядов

Вектор E сонаправлен с вектором силы, действующей на помещенный в поле пробный заряд. Для положительного заряда его вектор E направлен от этого заряда. А для отрицательного заряда его вектор E направлен к этому заряду.

Примечание: Однонаправленные или противоположно направленные, то есть, параллельные векторы, называют коллинеарными. У них может отличаться длина.

Как изменяется длина вектора Е с расстоянием

Длина вектора напряженности с расстоянием быстро убывает. Об этом можно судить с помощью формулы, описывающей модуль данного вектора:

\[\large E = k \cdot \frac {Q}{r^{2}} \]

Расстояние r возводится в квадрат и расположено в знаменателе. Это значит, что если расстояние увеличится в 2 раза, то напряженность уменьшится в 4 раза.

А если, например, расстояние увеличится в 3 раза, то напряженность уменьшится в 9 раз.

На рисунке 9 отражено изменение длины вектора напряженности. Обратите внимание на направление этого вектора и знак заряда:

Напряженность поля, созданного зарядом, зависит от расстояния
Рис. 9. Как напряженность зависит от расстояния до заряда, создавшего поле

Мы можем выразить зависимость напряженности от расстояния с помощью знака пропорции:

\[\large E \sim \frac {1}{r^{2}} \]

Подобную зависимость на графике можно отразить такой кривой:

График изменения длины вектора напряженности с расстоянием
Рис. 10. Модуль вектора напряженности электрического поля быстро уменьшается с увеличением расстояния до заряда

Как видно из рисунка 10, увеличение расстояния до заряда в четыре раза вызывает ослабление напряженности его поля в шестнадцать раз.

Как по известной напряженности вычислить силу, с которой поле действует на заряд

Если известна напряженность поля, то силу, которая действует на заряд, помещенный в это поле, можно вычислить по формуле:

\[\large \boxed{ \vec{E} \cdot q = \vec{F} } \]

\(\large q \left( \text{Кл}\right) \) – заряд, положительный, или отрицательный, помещенный в выбранную точку пространства, в которой существует электрическое поле;

Формула записана в векторном виде. Это значит, что она позволяет найти обе характеристики силы, действующей на заряд — направление вектора силы и его модуль.

Умножив заряд на напряженность в выбранной точке поля, можно вычислить силу, действующую на заряд со стороны поля.

Вектор напряженности помогает посчитать силу, действующую на заряд
Рис. 11. Направления векторов силы и напряженности совпадают для положительного заряда и направлены противоположно для отрицательного заряда

Так как напряженность входит в формулу для вычисления силы, ее называют силовой характеристикой электрического поля.

Зная силу, мы можем по второму закону Ньютона вычислить ускорение заряда. А с помощью формул кинематики для равнопеременного движения, зная ускорение, можно определить перемещение заряда или траекторию его движения.

Как изобразить электрическое поле единичного заряда

Пусть неподвижный положительный точечный заряд создает в пространстве, окружающем его, электрическое поле. Нарисуем несколько векторов напряженности этого поля.

Красной точкой на рисунке обозначен заряд. А черным цветом обозначены точки, в которые помещали пробный заряд и измеряли поле.

Электрическое поле можно изобразить с помощью нескольких векторов напряженности
Рис. 12. Можно изображать поле неподвижного заряда, располагая в пространстве векторы напряженности

По длине векторов можно сделать вывод, чем ближе к заряженному телу расположен пробный заряд, тем сильнее на него действует поле. Увеличив же расстояние между заряженным телом и пробным зарядом, заметим, что действие поля уменьшится.

Поля, действие которых будет различаться в разных точка пространства, называют неоднородными. Значит, электрическое поле вокруг точечных зарядов, неоднородное.

Изображаем неоднородное электрическое поле силовыми линиями

Как видно, мы можем изобразить поле с помощью нарисованных в различных точках векторов напряженности. Однако, есть более удобный способ.

Присмотревшись к рисунку, можно заметить, что векторы напряженности, окружающие заряд, располагаются на некоторых прямых. Эти прямые обозначены пунктирными линиями на рисунке. Из называют линиями электрического поля, или линиями напряженности.

Примечание: Изображать электростатическое поле удобнее не с помощью векторов, а с помощью линий напряженности.

Если заряд единственный, а поблизости от него других зарядов нет, то его поле изображают радиально расходящимися во все стороны линиями.

Силовые линии одиночного заряда
Рис. 13. Набор силовых линий одиночного точечного заряда, это неоднородное поле

Линии положительных зарядов направлены от них, а линии отрицательных зарядов – к этим зарядам, так же, как векторы напряженности.

Мы помним, что вектор напряженности описывает силу, с которой поле, созданное зарядом может действовать на другие заряды. Поэтому, линии напряженности, так же, часто называют силовыми линиями поля.

Как выглядит поле двух взаимодействующих зарядов

Рассмотрим теперь поле взаимодействующих зарядов — положительного и отрицательного.

Силовые линии взаимодействующих зарядов кривые
Рис. 14. Неоднородное поле двух точечных взаимодействующих зарядов

Как видно, линии взаимодействующих зарядов искривляются и, их конфигурация искажается.

Мы знаем, что поле одного точечного заряда неоднородное. Поле двух взаимодействующих зарядов, так же, неоднородное.

Теперь проведем обобщение, на рисунке неоднородное поле изображают:

  • либо прямыми линиями, радиально расходящимися во все стороны от одиночного заряда, либо
  • кривыми линиями, для взаимодействующих зарядов.

По мере удаления от зарядов расстояние между линиями будет увеличиваться. Чем дальше линии располагаются одна от другой в некоторой области пространства, тем слабее поле в этой области.

Будет ли поле действовать на заряд, расположенный между силовыми линиями

У начинающих изучать электростатику часто возникает вопрос, а будет ли на заряд, находящийся на рисунке между силовыми линиями, действовать сила с стороны электрического поля? Конечно, будет.

Не имеет значения, находится ли заряд на силовой линии на рисунке, или в пространстве между силовыми линиями. Поле существует во всех точках рассматриваемой области, поэтому на заряд будет действовать сила в любой точке поля, независимо, находится ли эта точка на силовой линии, или нет.

Примечание: Силовые линии – это всего лишь способ графического обозначения поля в некоторой области пространства. Поле существует во всех точках пространства, а не только на силовых линиях.

Свойства силовых линий электростатического поля

Можно выделить два свойства силовых линий поля, создаваемого неподвижными зарядами:

  1. Силовые линии имеют начало и конец – они начинаются на положительных и заканчиваются на отрицательных зарядах.
  2. Напряженность поля больше в той области, в которой линии располагаются гуще.
Свойства силовых линий электростатического поля
Рис. 15. Два свойства силовых линий электрического поля, созданного неподвижными зарядами

Примечание: Существует, так же, вихревое электрическое поле. Это поле не связано с неподвижными зарядами. Его линии замкнуты сами на себя. Картина такого поля представляет собой нечто похожее на вихрь, отсюда и появилось его название. Подробнее о вихревом электрическом поле написано в статье, посвященной электромагнитным волнам.

Поле сильней там, где его линии располагаются ближе одна к другой, а так же там, где длиннее вектор Е.

Где заканчиваются линии единственного заряда

Линии электростатического поля, начавшись на положительном заряде, должны закончиться на каком-либо отрицательном заряде.

Если поблизости от какого-либо заряда не располагается второй заряд, имеющий противоположный знак, то линии поля такого одинокого заряда уходят в бесконечность.

Там, далеко, на бесконечности, всегда найдется заряд, имеющий противоположный знак, на котором будут заканчиваться линии рассматриваемого одиночного заряда.

Лини одиночного заряда уходят в бесконечность
Рис. 16. Если заряд единичный и поблизости других зарядов противоположного знака нет, то силовые линии его уходят в бесконечность и там заканчиваются на противоположном заряде

Почему заряды называют источниками электрического поля

Электростатическое поле имеет свои электрические источники.

Нам известно, что линии электростатического поля имеют начало и конец. Они начинаются на положительных зарядах, а на отрицательных зарядах заканчиваются.

Поэтому, положительные заряды называют источниками поля, а отрицательные – стоками.

Электрическое поле имеет свои электрические источники - заряды
Рис. 17. Электрические заряды называют источниками электростатического поля

Как изобразить однородное электрическое поле

Если равномерно распределить заряды по двум плоским поверхностям, расположив эти поверхности на некотором расстоянии параллельно, то в пространстве между этими поверхностями электрическое поле будет однородным.

Примечание: Система из двух параллельных проводящих поверхностей, расположенных на некотором расстоянии одна от другой, называют электрическим конденсатором.

Однородное поле на рисунке изображают параллельными прямыми линиями, расстояние между которыми не изменяется.

Такие поля можно создать только в некоторой ограниченной области пространства. Их удобно изучать, потому, что в любой точке такого поля вектор напряженности будет иметь одно и то же направление и длину.

Параллельные силовые прямые изображают однородное поле
Рис. 18. Поле, расположенное в пространстве между двух заряженных плоскостей, будет однородным

Если во всех точках пространства, в которых существует электрическое поле, вектор напряженности имеет одинаковое направление и длину, то это поле называют однородным.

Примечание: Если говорить начистоту, то у концов плоских поверхностей линии поля будут искривляться. Это значит, что у краев поле не будет однородным.

Поэтому, для создания однородного электрического поля в учебной литературе рассматривают абстрактные бесконечно протяженные плоскости.

Читайте отдельную статью том, как обозначают распределенные заряды (откроется в новой вкладке).

Связь между векторами E неоднородного поля и линиями напряженности

Рассмотрим еще раз рисунок, на котором изображено поле двух взаимодействующих зарядов. Выберем на нем одну силовую линию. Вычислим длины нескольких векторов E и нарисуем их в выбранных точках, расположенных на этой линии.

Векторы напряженности направлены по касательным к силовым линиям
Рис. 19. Силовая линия двух притягивающихся точечных зарядов и векторы напряженности в нескольких точках этой линии

Если через каждый вектор напряженности провести прямую линию, можно заметить, что эти линии образуют семейство касательных. Такие касательные прямые линии ограничивают собой кривую. Эта кривая и будет являться силовой линией.

Теперь можно дать определение силовых линий:

Силовая линия электростатического поля – это линия, касательная к которой в любой выбранной точке будет сонаправлена с вектором напряженности электрического поля в этой же точке.

В отдельной статье будет рассказано о работе электрического поля и еще одной его характеристике — потенциале.

Ссылка на основную публикацию
Вставить формулу как
Блок
Строка
Дополнительные настройки
Цвет формулы
Цвет текста
#333333
Используйте LaTeX для набора формулы
Предпросмотр
\({}\)
Формула не набрана
Вставить